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Typical Measurement Process
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Quantization in time and amplitude




In Reality...

* The world is not analog but measurable by
quanta

* The analog measurement is the result of a
conversion of the true signal

« Every conversion introduces errors

Quanta — Analog Signal — Digital




Why not Skipping Analog?

Quanta — Digital

Example:
photons — digital pulses
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Why, when, where?
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2D Imaging

Conclusions & future work
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Why, When, Where?



Why Do We Care?

« Single photon detectors (SPDs) are entering the
mainstream

« They will be found in medium to high volume
applications

Examples:

— Secure Telecom (private key distribution systems) [Gisin/UniGe,
|dQuantique, SensL]

— Optical Telecom [Boser/UCB, Pister/UCB, Dust Networks]

— True Random Number Generators [Popovic/EPFL, IdQuantique]
— High sensitivity (L) videocams [Cork Univ., QinetiQ, e2v]

— 3D videocams for gaming applications [***]

— Low dose X-ray imaging [Hamamatsu, Fairchild Imaging]




SPDs In Science

* Molecular count/detection
« Neuro-activity scanning (dye'-based)

* Fluorescence correlation spectroscopy
(FCS)

« Two-photon spectroscopy
* Fluid-dynamics research
* Non-ionizing imaging (transillumination)

1) Dye is a substance composed of nanoparticles which change reflectivity
depending on potential



Neuro-activity Scanning

[Grinvald et al., 2001]



Neuro-activity Scanning (Cont.)

Al =103 |

for Al >> ¢2(l) = |2

— must work with ultra-high
intensities

but, most CCDs and CMOS APS
are saturated

[Grinvald et al., 2001]



Fluorescence Correlation
Spectroscopy

FCS with CMOS SPAD
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—Picosecond time resolution is needed to build sufficiently
precise characterization




Bioluminescence Detection

* Principle
— Luciferase based assay
methods (550nm) used
to detect pathogens,
proteins and DNA
sequencing
* Features:
— Sensitivity: 10-6Lx
— pixel size: 250x250um

[Eltoukhy et al., ISSCC 2004]



Fluid-dynamics Research

* Principle:
— Particle image
velocimetry (PIV)
 Features:
— 1008x924 pixels
— Strobe illumination
1kHz
— Velocity profile
computation via
cross-correlation

Courtesy of H.M.Fritz



Single Photon Projects

« Current
— 3D camera
— Near-saturation cortical imaging (EPFL-LS)
— High-speed digital camera (Industry)

— High-speed shutter digital camera (Columbia
University)

* Near future
— Ultra-high speed Calcium Flux in neurons (EPFL-LS)
— 3D long-distance camera (Industry)

— Free space com (Academia)
— Transillumination (EPFL-MT)



Single Photon Avalanche
Diodes (SPADSs)



Photoelectric Effect
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Avalanche Effect
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SPAD Operating in Geiger Mode
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Geiger |avalanche conventional

[Rochas, TransED, 2002] /
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SPAD Operating in Geiger Mode

passive quenching: operation cycle:

photon

v arrival
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— One photon ® one cycle (dead time definition)
— Thermally generated carriers ® dark counts



Dark Counts

Intuition:

Traps capture photocharges and release them randomly
(by diffusion, tunneling, etc.) — avalanche is triggered — spurious

pulses
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CMOS SPAD (ISSCC04)

VDD = +5V

R f:l digital
q pulse oUT

V,=-25.5V

Main features of the pixel
Voo = VDD + |V, | >V, « dead time : 32ns

* PDP: ~12% @ 635nm

« dark count rate typ. 350Hz
 timing jitter: < 50ps



SPAD Evolution (ISSCCO05)

VDD VDD

ROWSEL

4

<> ROWSEL

Features
— Pitch reduction
— Column routing mechanism
— MOS Quenching resistance

COLUMN




3D Imaging



Goal

— Find distance to each point in the scene
(rangefinding)

— Build depth map of the scene




Specific 3D Applications

Surveying

— Geo, construction
Automotive

— Airbag deployment

— Collision detection/avoidance
Security

— facial recognition

— room volumetric analysis
Consumer

— Human-computer interfaces
— VR

Medical/Research

— Optical tomography

— Bio-chemical & molecular analysis



Electronic Theodolites

« Some specifications

Sub-mm precision
~100m range
Low fps(?)




Face Recognition

« Some specifications
— 600um~1mm precision
— 1~2m range
— 30 fps



Virtual (Planar) Keyboard

« Some specifications

— 2mm precision
— 20~30cm range
— 50-70 fps



3D Imaging:

optical Time-of-flight (TOF)



Rangefinding

Methods

— Interferometry
— Triangulation

— Time-of-flight (TOF)
Principle

— Light

— RF

— Ultrasound

— Magnetism




Optical TOF Based Rangefinding

pulsed |
light source |
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Conventional Approaches

Single highly sensitive detector with mechanical scanning
device

Problems:

— high-cost

— non-portable

Array of conventional CMOS detectors with high-power
optical source
Problems:

— 10~100W peak power
— potentially unsafe




Our Approach

» Array of Single Photon Avalanche Diodes
(SPADs) fabricated in CMOS process

* Pros:
— Milliwatt laser source (peak power)

— Compact
— Low cost



3D Imaging:

System Architecture



Sensor Architecture

SPAD Array

Multiplexer



Sensor Photomicrograph
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Electro-Optical System

— PULSED LASER

CMOS SPAD SENSOR

N
A

START STANDARD
LENS TARGET

[ ]

CMOS
TDC

I e uncollimated 635nm laser

* pulse width : 100ps
* peak power : 100~250mW
* fr = 40~50MHz




TOF Computing

laser pulse

SPAD signal |
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3D Imaging:

Measurements



Time Resolution
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Distance



Model

High resolution Camera:
20cm x 20cm view



Depth Map Example

o |Lateral resolution:
— 64x64 pixels

* Depth resolution:
— 1.3mm (wc)

* Range:
— 3.75m

[Niclass and Charbon, ISSCC 2005]



Companion Techniques

* Multi-exposure super-resolution technigues

— Microscanning (x-/y- piezo elements)
— S/R algorithm (LCAV, Prof. Vetterli)

 CMOS time-to-digital-converter (TDC)
Integration
— Current resolution: 100ps (0.8um)
— Target (under test): 25ps (0.18um)



Microscanning Mechanism
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CMOS Time-to-Digital-Converter

. CMOS TDC
(RSUT)

« Resolution:
100ps

« Accuracy:
<30ps

* Clock:
40MHz



3D Performance Summary

Parameter 32x32 64x64
W.C. axial uncertainty o(d) 1.8mm 1.3mm
(10k meas.)

Axial range 0.15~4m| 0.15~3.75m
Single measurement 268ps 350ps

uncertainty o(t)

Opt. peak/average power

100mW/0.5mW

250mW/0.7mW

Repetition rate 50MHz 40MHz
Light pulse width 100ps 100ps
Chip power dissipation <1TmW <6mW




2D Imaging



CCDs (e.g.)
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Conventional CMOS APS (e.qg.)
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Performance of Interest

Dynamic range

— Ratio between the smallest detectable and maximum
detectable intensity

« SNR

— Ratio between signal due to intensity and noise

- FPS

— Frames-per-second

Pitch

— Distance between pixels
... and FPN, smearing, blooming, color, etc.



Limiting Factors

Miminum # detectable photons

Noise

— Read-out noise
— kT/C noise
— 1/f noise

Saturation
— Limited number of available charges

Speed (10kfps)



Imagers Based on SPADs
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One conversion:

Photons — D

One and 1/2 source of noise:

Shot, DCR, (digital noise)



SPAD Arch Limiting Factors

Miminum # detectable photons

— Limited by DCR

Noise

— Read-out noise-

— KT/Cnoise—

— Hneise—

Saturation

— Limited by dead time and read-out bandwidth
Speed

— Shown 250kpps



New Challenges

Departure from amplitude based imager
= Therefore:

— Local evaluation of intensity

— Intensity storage

— Digital noise

— Low-power operation
Example:

— Rrows
— share column of bandwidth B < 1/,

Then, in average every pixel has B/R bandwidth, thus
dynamic range = 20{Log(B/R)-Log(DCR)}

®» Architecture directly influences Performance



Importance of Pixel Timing

Performance:
» Pertiming jitter: < 50ps
e deadtime : 32ns

Potential impact:
« Saturation
« Smearing

(FWHM)



Experimental Setup for Imager

SPAD Array

Multiplexer

Counter




DCR



Sensitivity and Dynamic Range
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Linearity



Photon Detection Probability

Peak:, 26% @ 460nm 12% @ 635nm
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Example

SPAD Camera:
32x32pixels

High resolution Camera:
20cm x 20cm view



High Speed Example

Features

— No measurable thermal noise (Poisson noise
dominates)

— No measurable cross-talk, blooming, smearing

4us 10us 25us 100us Ims

[Niclass, Rochas, Besse, Popovic, and Charbon, Transducers 2005]



High Sensitivity Example

Deep Twilight Full Moon Quarter Moon  Starlight

2 Ix 2x10-1 Ix 2x10-2 Ix 2x10-3 Ix



Intensity Performance Summary

Parameter Value
Minimum Integration Time 4us
Maximum Pixel Dynamic Range 120dB
Optical Intensity @ SNR=0dB 1.3x103 Lx
Dark Count Rate (DCR) T=room/0°C 350Hz/75Hz
Pixel Fillfactor 1.1%
Photon Detection Probability (PDP) 1-26%




Conclusions

Significance and applications of 3D
imaging

Fabricated 1k pixel SPAD array in
standard CMOS technology

psec (um) accuracy reached with m\W
laser source

Chip power dissipation <1mW

High sensitivity, dynamic range, and
linearity for 2D applications



Future Work

VGA pixel arrays
Count / Read-out parallelization

Pixel-level and column-level time-to-digital
converters (TDCs)

Pitch reduction
On-chip basic computation
Color



Future Directions

qCAD
Single photon telecommunications
Accelerated DNA sequencing

Laserless ultra-short range quantum
communication and computing

Data management



http://aqua.epfl.ch





